Вопрос:

В треугольниках ABC и A1B1C1 известно: AB = A1B1, BC = B1C1, ∠B = ∠B1. Докажите, что треугольники равны.

Фотография

Ответ ассистента

Для доказательства равенства треугольников ABC и A1B1C1 используем первый признак равенства треугольников – по двум сторонам и углу между ними. Нам дано: 1. Сторона $AB$ в треугольнике $ABC$ равна стороне $A1B1$ в треугольнике $A1B1C1$ ($AB = A1B1$). 2. Сторона $BC$ в треугольнике $ABC$ равна стороне $B1C1$ в треугольнике $A1B1C1$ ($BC = B1C1$). 3. Угол $B$ в треугольнике $ABC$ равен углу $B1$ в треугольнике $A1B1C1$ ($\angle B = \angle B1$). Поскольку у нас есть две равные стороны и равный угол между ними в обоих треугольниках, то треугольники $ABC$ и $A1B1C1$ равны по первому признаку равенства треугольников. **Что и требовалось доказать.**

Другие решения ИИ