**1. Сложить и вычесть дроби с одинаковыми знаменателями**
1) $\frac{1}{9} + \frac{2}{9} = \frac{3}{9} = \frac{1}{3}$
2) $\frac{3}{7} + \frac{2}{7} = \frac{5}{7}$
3) $\frac{1}{2} + \frac{1}{2} = \frac{2}{2} = 1$
4) $\frac{5}{6} + \frac{1}{6} = \frac{6}{6} = 1$
5) $\frac{3}{8} - \frac{2}{8} = \frac{1}{8}$
6) $\frac{4}{11} - \frac{1}{11} = \frac{3}{11}$
7) $\frac{11}{12} - \frac{9}{12} = \frac{2}{12} = \frac{1}{6}$
8) $\frac{1}{10} + \frac{8}{10} = \frac{9}{10}$
9) $\frac{15}{16} - \frac{11}{16} = \frac{4}{16} = \frac{1}{4}$
10) $\frac{7}{13} + \frac{5}{13} = \frac{12}{13}$
11) $\frac{11}{14} - \frac{3}{14} = \frac{8}{14} = \frac{4}{7}$
12) $\frac{14}{17} - \frac{7}{17} = \frac{7}{17}$
13) $\frac{1}{7} + \frac{2}{7} = \frac{3}{7}$
14) $\frac{3}{7} + \frac{4}{7} = \frac{7}{7} = 1$
15) $\frac{18}{19} - \frac{7}{19} = \frac{11}{19}$
**2. Привести дроби к наименьшему общему знаменателю**
а) $\frac{5}{7}$ и $\frac{1}{2}$
Наименьший общий знаменатель (НОЗ) для 7 и 2: $7 \times 2 = 14$
$\frac{5}{7} = \frac{5 \times 2}{7 \times 2} = \frac{10}{14}$
$\frac{1}{2} = \frac{1 \times 7}{2 \times 7} = \frac{7}{14}$
б) $\frac{7}{20}$ и $\frac{1}{15}$
НОЗ для 20 и 15: $20 = 2^2 \times 5$, $15 = 3 \times 5$. НОЗ $= 2^2 \times 3 \times 5 = 4 \times 3 \times 5 = 60$
$\frac{7}{20} = \frac{7 \times 3}{20 \times 3} = \frac{21}{60}$
$\frac{1}{15} = \frac{1 \times 4}{15 \times 4} = \frac{4}{60}$
в) $\frac{3}{26}$ и $\frac{5}{39}$
НОЗ для 26 и 39: $26 = 2 \times 13$, $39 = 3 \times 13$. НОЗ $= 2 \times 3 \times 13 = 78$
$\frac{3}{26} = \frac{3 \times 3}{26 \times 3} = \frac{9}{78}$
$\frac{5}{39} = \frac{5 \times 2}{39 \times 2} = \frac{10}{78}$
г) $\frac{8}{11}$ и $\frac{5}{8}$
НОЗ для 11 и 8: $11 \times 8 = 88$
$\frac{8}{11} = \frac{8 \times 8}{11 \times 8} = \frac{64}{88}$
$\frac{5}{8} = \frac{5 \times 11}{8 \times 11} = \frac{55}{88}$
д) $\frac{7}{13}$ и $\frac{2}{11}$
НОЗ для 13 и 11: $13 \times 11 = 143$
$\frac{7}{13} = \frac{7 \times 11}{13 \times 11} = \frac{77}{143}$
$\frac{2}{11} = \frac{2 \times 13}{11 \times 13} = \frac{26}{143}$
е) $\frac{3}{22}$ и $\frac{2}{33}$
НОЗ для 22 и 33: $22 = 2 \times 11$, $33 = 3 \times 11$. НОЗ $= 2 \times 3 \times 11 = 66$
$\frac{3}{22} = \frac{3 \times 3}{22 \times 3} = \frac{9}{66}$
$\frac{2}{33} = \frac{2 \times 2}{33 \times 2} = \frac{4}{66}$
ж) $\frac{7}{60}$, $\frac{13}{40}$ и $\frac{9}{20}$
НОЗ для 60, 40 и 20: $60 = 2^2 \times 3 \times 5$, $40 = 2^3 \times 5$, $20 = 2^2 \times 5$. НОЗ $= 2^3 \times 3 \times 5 = 8 \times 3 \times 5 = 120$
$\frac{7}{60} = \frac{7 \times 2}{60 \times 2} = \frac{14}{120}$
$\frac{13}{40} = \frac{13 \times 3}{40 \times 3} = \frac{39}{120}$
$\frac{9}{20} = \frac{9 \times 6}{20 \times 6} = \frac{54}{120}$
з) $\frac{52}{105}$, $\frac{7}{95}$ и $\frac{61}{63}$
НОЗ для 105, 95 и 63: $105 = 3 \times 5 \times 7$, $95 = 5 \times 19$, $63 = 3^2 \times 7$. НОЗ $= 3^2 \times 5 \times 7 \times 19 = 9 \times 5 \times 7 \times 19 = 285 \times 19 = 855 \times 7 = 5985 \times 5 = 29925$
$\frac{52}{105} = \frac{52 \times (19 \times 3)}{105 \times (19 \times 3)} = \frac{52 \times 57}{105 \times 57} = \frac{2964}{5985}$
$\frac{7}{95} = \frac{7 \times (3 \times 7 \times 3)}{95 \times (3 \times 7 \times 3)} = \frac{7 \times 63}{95 \times 63} = \frac{441}{5985}$
$\frac{61}{63} = \frac{61 \times (5 \times 19)}{63 \times (5 \times 19)} = \frac{61 \times 95}{63 \times 95} = \frac{5795}{5985}$
**3. Сравнить дроби с разными знаменателями**
1) $\frac{3}{4}$ и $\frac{1}{6}$
НОЗ для 4 и 6: 12
$\frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12}$
$\frac{1}{6} = \frac{1 \times 2}{6 \times 2} = \frac{2}{12}$
$\frac{9}{12} > \frac{2}{12}$, значит $\frac{3}{4} > \frac{1}{6}$
2) $\frac{5}{6}$ и $\frac{7}{8}$
НОЗ для 6 и 8: 24
$\frac{5}{6} = \frac{5 \times 4}{6 \times 4} = \frac{20}{24}$
$\frac{7}{8} = \frac{7 \times 3}{8 \times 3} = \frac{21}{24}$
$\frac{20}{24} < \frac{21}{24}$, значит $\frac{5}{6} < \frac{7}{8}$
3) $\frac{9}{10}$ и $\frac{1}{4}$
НОЗ для 10 и 4: 20
$\frac{9}{10} = \frac{9 \times 2}{10 \times 2} = \frac{18}{20}$
$\frac{1}{4} = \frac{1 \times 5}{4 \times 5} = \frac{5}{20}$
$\frac{18}{20} > \frac{5}{20}$, значит $\frac{9}{10} > \frac{1}{4}$
4) $\frac{2}{15}$ и $\frac{1}{6}$
НОЗ для 15 и 6: 30
$\frac{2}{15} = \frac{2 \times 2}{15 \times 2} = \frac{4}{30}$
$\frac{1}{6} = \frac{1 \times 5}{6 \times 5} = \frac{5}{30}$
$\frac{4}{30} < \frac{5}{30}$, значит $\frac{2}{15} < \frac{1}{6}$
5) $\frac{11}{12}$ и $\frac{3}{8}$
НОЗ для 12 и 8: 24
$\frac{11}{12} = \frac{11 \times 2}{12 \times 2} = \frac{22}{24}$
$\frac{3}{8} = \frac{3 \times 3}{8 \times 3} = \frac{9}{24}$
$\frac{22}{24} > \frac{9}{24}$, значит $\frac{11}{12} > \frac{3}{8}$
6) $\frac{1}{16}$ и $\frac{5}{12}$
НОЗ для 16 и 12: 48
$\frac{1}{16} = \frac{1 \times 3}{16 \times 3} = \frac{3}{48}$
$\frac{5}{12} = \frac{5 \times 4}{12 \times 4} = \frac{20}{48}$
$\frac{3}{48} < \frac{20}{48}$, значит $\frac{1}{16} < \frac{5}{12}$
7) $\frac{13}{18}$ и $\frac{1}{10}$
НОЗ для 18 и 10: 90
$\frac{13}{18} = \frac{13 \times 5}{18 \times 5} = \frac{65}{90}$
$\frac{1}{10} = \frac{1 \times 9}{10 \times 9} = \frac{9}{90}$
$\frac{65}{90} > \frac{9}{90}$, значит $\frac{13}{18} > \frac{1}{10}$
8) $\frac{5}{24}$ и $\frac{15}{16}$
НОЗ для 24 и 16: 48
$\frac{5}{24} = \frac{5 \times 2}{24 \times 2} = \frac{10}{48}$
$\frac{15}{16} = \frac{15 \times 3}{16 \times 3} = \frac{45}{48}$
$\frac{10}{48} < \frac{45}{48}$, значит $\frac{5}{24} < \frac{15}{16}$